Section 1

Isometric Training Muscular Contraction The Resistance Band

^{©2014.} Dr. Larry Van Such. www.AthleticQuickness.com

ISOMETRIC TRAINING

The word ISOMETRIC is defined as follows: õIsoö means equal or the same, and õmetricö means length. Combining these two definitions we get õequal or the same lengthö. Isometrics, as it pertains to muscle training, involves tensing muscles against other muscles or against an immovable object while the length of the muscle remains unchanged. For isometric training to be effective, this muscular tension must be maintained over a certain period of time. Therefore, isometric training is best defined as follows:

The sustained contraction of a muscle over a certain period of time where the length of the muscle remains unchanged.

The following are a few examples of an isometric contraction:

Example 1. Take a 20 pound weight and perform a biceps curl. Hold a position halfway between the repetition for 10 seconds. The length of your biceps muscle doesnot change during this time. A force is still being applied. See Figure 1-1 below:

Figure 1-1.

Example 2. Push against a wall for 10 seconds. The wall doesnot move and neither does the length of the muscles in your arms pushing against it. A force is still being applied. See Figure 1-2 below:

Figure 1-2.

Isometric training has been around for a long time, and so it is nothing new. Many extraordinary results in muscle strength have been achieved in a very short period of time with this type of training. However, because of the number of new training products and techniques on the market today, its use by athletes is often overlooked.

MUSCULAR CONTRACTION

In order for you to appreciate the value of isometric training, it will be necessary to briefly discuss some basic anatomical principles of muscular contraction. To start with, all skeletal muscles consist of three main fiber types. These fiber types are listed below:

- 1) Slow twitch fibers Responsible for the endurance and strength of a muscle.
- 2) Fast twitch fibers Responsible for the speed and strength of a muscle.
- 3) Intermediate twitch fibers Possess qualities of both slow and fast twitch fibers.

In most muscles, these fibers are intermingled. However, there is usually a predominance of one or the other. For example, in postural muscles of the spine, the slow twitch fibers dominate. This is because slow twitch fibers can undergo extensive repetitive contractions without fatigue. In non-postural limb muscles like the arms and legs, the fast twitch fibers dominate. This allows for powerful forces to be generated over a short period of time.

All of these fiber types are arranged into groups known as *motor units*. A motor unit is defined as one motor neuron and all the muscle fibers it supplies. There are many motor units within the overall muscle. When a muscle begins to contract, an action potential is carried down the motor neuron across the motor endplate to the muscle fibers it supplies. Initially, only some of the motor units become active. As the demand on the muscle increases, more and more motor units are recruited to help support this demand. As the demand on the muscle decreases, the number of motor units also decreases. This is a general description of muscular contraction.

With isometric training, a muscle opposes some form of resistance and is contracted to a certain length and then held for a certain period of time, usually 10 seconds or more. There are no repetitions required here as in weight training.

The biggest advantage to this type of training is twofold. *First*, by forcing your muscles to hold a position for a certain length of time, your body starts to recruit more and more motor units to help maintain this contraction. Motor units that are rarely exercised within a muscle are now brought into use, perhaps for the first time. *Second*, the motor units that are recruited are forced to hold their contraction continuously, time after time, until your muscles achieve a state of maximum intensity safely and effectively. The end result is that the entire muscle matures very quickly.

THE RESISTANCE BAND

One of the most popular forms of exercise training today deals with what is known as resistance training. Essentially most forms of training deal with some type of resistance aid (weights, etc.) but the way the term õresistance trainingö is used today means to utilize things such as rubber bands or flexible pieces of metal to provide you with a simulated form of weight training. One of the *new* and more *popular* types of resistance training aids is what is known as the resistance band or exercise band. See Figure 1-3 on the next page:

^{©2014.} Dr. Larry Van Such. www.AthleticQuickness.com

Figure 1-3. The resistance or exercise band.

This is an outstanding product that has a very unique physical property known as a *hyper-elastic potential*. This means that the more you stretch the band the more resistance you will have to apply. The amount of resistance found within an elastic band is therefore a function of its length when stretched. When used properly, the resistance band is the ideal speed training device.

Hereøs a very basic idea of how and why it works: imagine first that you are performing a biceps curl, much like that shown in Figure 1-1 on page 2, except that instead of holding a weight, you are holding one end of a resistance band with the other end either attached to the floor or perhaps secured under your foot. Since we are using an isometric contraction, this position with the elbow flexed at about 90 degrees is held for 10-15 seconds without moving it.

While holding this position, imagine the band is already stretched and exerting a significant amount of force back into your biceps muscle. For some, this may be a 40 lb equivalent force, for others, perhaps more. After a few seconds, your biceps muscle will naturally start to weaken. When this happens, your body will begin to recruit more and more motor units to help keep your arm and elbow in this fixed position.

Eventually, and rather quickly if the resistance is high enough, you get to the point where you can no longer hold the band still and maintain the same amount of force efficiently. The muscle has become over-stimulated This causes your arm to give out or start to shake a little, since the over-stimulated muscle weakens and your coordination dissipates. This is one of the desired states for your muscles to be in to train them for speed and quickness.

These movements in your elbow and arm, however small and in whichever direction, instantaneously alters the amount of force that the resistance bands supply. Unlike weights, which always have the same amount of resistance, the bandøs resistance is variable and changes as its length changes. Even small changes in distance, whether greater or less than the starting position, will affect the amount of resistance your muscles exert.

Your muscles constantly perceive these small changes in resistance and alter their typical recruitment pattern of motor units to try and maintain the held position. This new pattern is considerably different than that observed while undergoing a similar exercise with a 40 lb dumbbell, because its resistance is not subject to a change in position.

^{©2014.} Dr. Larry Van Such. www.AthleticQuickness.com

This is a great benefit to athletes since with each new recruitment pattern of motor units a muscleøs weakness and lack of coordination on a much deeper level than normally experienced, is instantly exposed, forcing the over-stimulated muscle fibers to immediately get stronger and with more precision than before. Furthermore, the mass of the muscle typically does not significantly increase with this type of training which, if it did, could potentially offset these gains.

So, whenever you are able to increase a muscleøs strength and coordination without adding any additional body weight, your speed, quickness and athletic performance will automatically increase. This again is just one of the reasons how and why this type of training works.

Imagine now applying this strategy in not only conventional ways as in the biceps example here, but also in ways and positions you may have never thought of before. When you do this to your muscles, you will immediately expose and then eliminate greater weaknesses in them leading to a vastly improved athletic performance.

Therefore, throughout this entire program, we will be *using the resistance band with an isometric training strategy to increase the strength, coordination and contraction rate within specific muscles located throughout your entire body - all of which play important roles in the running and kicking processes. So get ready, you are about toí*

Kick Farther and Run Faster With Isometric Training!

